Part Number Hot Search : 
3M035AB M7R16TAJ 20100CT KB2720YW ICS90C65 LT3710 1N4623 MHW5382
Product Description
Full Text Search
 

To Download TS912IN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS912
RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER
s RAIL TO RAIL INPUT AND OUTPUT VOLTAGE RANGES
s SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
s EXTREMELY LOW INPUT BIAS CURRENT : s s s s s s
1pA typ LOW INPUT OFFSET VOLTAGE : 2mV max. SPECIFIED FOR 600 AND 100 LOADS LOW SUPPLY CURRENT : 200A/Ampli (VCC = 3V) LATCH-UP IMMUNITY ESD TOLERANCE : 3KV SPICE MACROMODEL INCLUDED IN THISSPECIFICATION
N DIP8 (Plastic Package)
DESCRIPTION The TS912 is a RAIL TO RAIL CMOS dual operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. At 3V, the output reaches :
D SO8 (Plastic Micropackage)
PIN CONNECTIONS (top view)
u VCC- +30mV VCC+ -40mV with RL = 10k u VCC- +300mV VCC+ -400mV with RL = 600
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200A/amp @ VCC = 3V. Source and sink output current capability is typically 40mA at VCC = 3V, fixed by an internal limitation circuit. ORDER CODE
Package Part Number TS912I/AI/BI Temperature Range N -40, +125C * D *
Output 1 Inverting Input 1 Non-inve rting Input 1
1 2 3 4
+ +
8V CC
+
7 Output 2 6 Inve rting Input 2 5 Non-inve rting Input 2
V CC
N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)
December 2001
1/12
TS912
SCHEMATIC DIAGRAM (1/2 TS912)
VCC
Non-inverting Input
Interna l Vre f Inverting Input Output
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vid Vi Iin Io Toper Tstg Supply voltage Input Voltage 3) Current on Inputs Current on Outputs Operating Free Air Temperature Range TS912I/AI/B I Storate Temperature
1) 2)
Parameter
Value 18 18 -0.3 to 18 50 130 -40 to + 125 -65 to +150
Unit V V V mA mA C C
Differential Input Voltage
1. All voltages values, except differential voltage are with respect to network ground terminal. 2. Differential voltagesare non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol VCC Vicm Supply voltage Common Mode Input Voltage Range
-
Parameter
Value 2.7 to 16 VCC -0.2 to VCC +0.2
+
Unit V V
2/12
TS912
ELECTRICAL CHARACTERISTICS VCC+ = 3V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Symbol Parameter Input Offset Voltage (Vic = Vo = VCC/2) Vio Tmin. Tamb Tmax. TS912 TS912A TS912B TS912 TS912A TS912B 5 1 1 200 100 200 150 300 300 400 Min. Typ. Max. 10 5 2 12 7 3 Unit
mV
Vio Iio Iib ICC CMR SVR Avd
Input Offset Voltage Drift Input Offset Current 1) Tmin. Tamb Tmax. Input Bias Current 1) Tmin. Tamb Tmax. Supply Current (per amplifier, A VCL = 1, no load) T min. Tamb Tmax. Common Mode Rejection Ratio Vic = 0 to 3V, V o = 1.5V Supply Voltage Rejection Ratio (VCC+ = 2.7 to 3.3V, Vo = VCC/2) Large Signal Voltage Gain (RL = 10k, Vo = 1.2V to 1.8V) T min. Tamb Tmax. High Level Output Voltage (Vid = 1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Low Level Output Voltage (Vid = -1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Output Short Circuit Current (Vid = 1V) R L = 10k R L = 600 Source (Vo = VCC-) Sink (Vo = VCC+) Gain Bandwith Product (AVCL = 100, RL = 10k, C L = 100pF, f = 100kHz) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 1.3V to 1.7V) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 1.3V to 1.7V) Phase Margin Equivalent Input Noise Voltage (R s = 100, f = 1kHz) 20 20 R L = 10k R L = 600 2.95 2.9 2.3 50 3 2
V/C pA pA A dB dB V/mV
70 80 10
VOH
2.96 2.6 2
V
2.8 2.1
VOL
30 300 900
50 70 400
mV
100 600 40 40 0.8 0.4 0.3 30 30 mA MHz V/s V/s Degrees nV/Hz
Io GBP SR+ SR m en
1. Maximum values including unavoidable inaccuracies of the industrial test
3/12
TS912
ELECTRICAL CHARACTERISTICS VCC+ = 5V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Symbol Parameter Input Offset Voltage (Vic = Vo = VCC/2) Vio Tmin. Tamb Tmax. TS912 TS912A TS912B TS912 TS912A TS912B 5 1 1 230 100 200 150 300 350 450 Min. Typ. Max. 10 5 2 12 7 3 Unit
mV
Vio Iio Iib ICC CMR SVR Avd
Input Offset Voltage Drift Input Offset Current 1) Tmin. Tamb Tmax. Input Bias Current 1) Tmin. Tamb Tmax. Supply Current (per amplifier, A VCL = 1, no load) T min. Tamb Tmax. Common Mode Rejection Ratio Vic = 1.5 to 3.5V, Vo = 2.5V Supply Voltage Rejection Ratio (VCC+ = 3 to 5V, V o = VCC/2) Large Signal Voltage Gain (RL = 10k, Vo = 1.5V to 3.5V) T min. Tamb Tmax. High Level Output Voltage (Vid = 1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Low Level Output Voltage (Vid = -1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Output Short Circuit Current (Vid = 1V) R L = 10k R L = 600 Source (Vo = VCC-) Sink (Vo = VCC+) Gain Bandwith Product (AVCL = 100, RL = 10k, C L = 100pF, f = 100kHz) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 1V to 4V) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 1V to 4V) Equivalent Input Noise Voltage (R s = 100, f = 1kHz) Phase Margin 45 45 R L = 10k R L = 600 4.95 4.9 4.25 60 55 10 7
V/C pA pA A dB dB V/mV
85 80 40
VOH
4.95 4.55 3.7
V
4.8 4.1
VOL
40 350 1400
50 100 500
mV
150 750 65 65 1 0.8 0.6 30 120 30 V/s nV/Hz dB Degrees mA MHz
Io GBP SR + SR en m
-
VO1 /VO2 Channel Separation (f = 1kHz)
1. Maximum values including unavoidable inaccuracies of the industrial test
4/12
TS912
ELECTRICAL CHARACTERISTICS VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Symbol Parameter Input Offset Voltage (Vic = Vo = VCC/2) Vio Tmin. Tamb Tmax. TS912 TS912A TS912B TS912 TS912A TS912B 5 1 1 400 100 200 150 300 600 700 Min. Typ. Max. 10 5 2 12 7 3 Unit
mV
Vio Iio Iib ICC
Input Offset Voltage Drift Input Offset Current Tmin. Tamb Tmax. Input Bias Current 1) Tmin. Tamb Tmax. Supply Current (per amplifier, A VCL = 1, no load) T min. Tamb Tmax. Common Mode Rejection Ratio Vic = 3 to 7V, V o = 5V Vic = 0 to 10V, V o = 5V Supply Voltage Rejection Ratio (VCC+ = 5 to 10V, V o = VCC/2) Large Signal Voltage Gain (RL = 10k, Vo = 2.5V to 7.5V) T min. Tamb Tmax. High Level Output Voltage (Vid = 1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Low Level Output Voltage (Vid = -1V) R L = 100k R L = 10k R L = 600 R L = 100 T min. Tamb Tmax. Output Short Circuit Current (Vid = 1V) Gain Bandwith Product (AVCL = 100, RL = 10k, C L = 100pF, f = 100kHz) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 2.5V to 7.5V) Slew Rate (AVCL = 1, RL = 10k, CL = 100pF, V i = 2.5V to 7.5V) Phase Margin Equivalent Input Noise Voltage (R s = 100, f = 1kHz) Total Harmonic Distortion (AVCL = 1, RL = 10k, CL = 100pF, V o = 4.75V to 5.25V, f = 1kHz) Input Capacitance R L = 10k R L = 600 Source (Vo = VCC-) Sink (Vo = VCC+) 45 50 R L = 10k R L = 600 9.95 9.85 9 60 50 60 15 10
1)
V/C pA pA A
CMR SVR Avd
90 75 90 50
dB dB V/mV
VOH
9.95 9.35 7.8
V
9.8 8.8
VOL
50 650 2300
50 150 800
mV
150 900 65 75 1.4 1.3 0.8 40 30 0.02 1.5 Degrees nV/Hz % pF mA
Io GBP SR + SRm en THD Cin
MHz V/s
1. Maximum values including unavoidable inaccuracies of the industrial test
5/12
TS912
TYPICAL CHARACTERISTICS Figure 1 : Supply Current (each amplifier) vs Supply Voltage Figure 2 : Input Bias Current vs Temperature
INPUT BIAS CURRENT, I ib (pA)
SUPPLY CURRENT, I CC ( A)
600 500 400 300 200 100 0 4 8 12 16
S UP P LYVOLTAGE, V CC (V) Ta m b = 25 C A VCL = 1 VO = VCC / 2
100
VCC = 10V Vi = 5V No loa d
10
1 25 50 75 100 125
TEMPER ATURE, Tamb ( C)
Figure 3a : High Level Output Voltage vs High Level Output Current
5
OUTPUT VOLTAGE, VOH (V)
Figure 3b : High Level Output Voltage vs High Level Output Current
20
OUTPUT VOLTAGE, VOH (V)
4 3 2
T a mb = 25 C V id = 100mV
VCC = +5V
16 12
T a mb = 25 C Vid = 100m V
VCC = +16V
VCC = +10V
8 4 0
VCC = +3V
1 0 -70 -56 -42 -28 -14 0
OUTPUT CURRENT, IOH (mA)
-70
-56
-42
-28
-14
0
OUTP UT C URRENT, IOH (mA)
Figure 4a : Low Level Output Voltage vs Low Level Output Current
5 4 3 2 1
T amb = 25 C V id = -100mV
Figure 4b : Low Level Output Voltage vs Low Level Output Current
10
OUTPUT VOLTAGE, VOL (V)
OUTPUT VOLTAGE, V OL (V)
8 6 4 2
T amb = 25 C V id = -100mV
VCC = +3V
VCC = 16V VCC = 1 0V
VCC = +5V
0
14
28
42
56
70
0
14
28
42
56
70
OUTPUT CURRENT, I OL (mA)
OUTP UT CURRENT, I OL (mA)
6/12
TS912
Figure 5a : Gain and Phase vs Frequency Figure 5b : Gain and Phase vs Frequency
50 40
50
GAIN P HAS E
Ta mb = 25 C VCC = 10V R L = 10k C L = 100pF AVCL = 100
P ha s e Margin
0
40
GAIN
0 45
Pha s e Margin
Ga in Ba ndwidth Product
PHASE (Degrees)
GAIN (dB)
GAIN (dB)
30 20 10 0 -10
45 90 135
30 20 10 0 10 10
2
P HASE
Ta mb = 25 C VCC = 10V R L = 600 C L = 100pF A VCL = 100
90 135 180
Ga in Ba ndwidth P roduc t
180
10
2
10
3
10 10 10 FREQUENCY, f (Hz)
4
5
6
10
7
10
3
10 10 10 FREQUE NCY, f (Hz)
4
5
6
10
7
Figure 6a : Gain Bandwidth Product vs Supply Voltage
GAIN BANDW. PROD., GBP (kHz)
Figure 6b : Gain Bandwidth Product vs Supply Voltage
GAIN BANDW. PROD., GBP (kHz)
1800 1400 1000
1800 1400 1000
Tamb = 25 C R L = 10k C L = 100pF
Tamb = 25 C R L = 600 C L = 100pF
600
600 200
200
0
4
8
12
16
0
4
8
12
S UP P LY VOLTAGE, VCC (V)
SUPP LY VOLTAGE, VCC (V)
Figure 7a : Phase Margin vs Supply Voltage
Figure 7b : Phase Margin vs Supply Voltage
PHASE MARGIN, m (Degrees)
PHASE MARGIN, m (Degrees)
60 50 40 30 20
60 50 40 30 20
Tamb = 25 C R L = 10k C L = 100pF
Tamb = 25 C R L = 600 C L = 100pF
0
4
8
12
16
0
4
8
12
16
SUP PLY VOLTAGE, VCC (V)
S UPP LY VOLTAGE, VCC (V)
PHASE (Degrees)
16
7/12
TS912
Figure 8 : Input Voltage Noise vs Frequency
EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz)
150
100
VCC = 10V Ta mb = 25 C R S = 100
50
0
10
1000 100 FREQUENCY (Hz)
10000
8/12
TS912
MACROMODEL Applies to : TS912 (VCC = 3V)
** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS912_3 1 3 2 4 5 (analog) ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 1.271505E+01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.125860E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.000000E+00 FCN 5 4 VOFN 5.000000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 2.750000E+02 FIN 5 19 VOFN 2.750000E+02 RG1 19 5 1.916825E+05 RG2 19 4 1.916825E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.3E+03 HZTN 5 30 VOFN 1.3E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 150 HONM 21 27 VOUT 3800 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 75 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724 HSCP 68 25 VSCP1 0.8E8 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08 VSCTHP 60 61 0.0875 ** VSCTHP = le seuil au dessus de vio * 500 ** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ** VSCTHN = le seuil au dessous de vio * 2000 ** c.a.d -375U-000U dus a l'offset ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Symbol Vio Avd ICC V icm VOH VOL Isink Isource GBP SR R L = 10k R L = 10k VO = 3V VO = 0V R L = 10k, CL = 100pF R L = 10k, CL = 100pF R L = 10k No load, per operator Conditions Value 0 10 200 -0.2 to 3.2 2.96 30 40 40 0.8 0.3 Unit mV V/mV A V V mV mA mA MHz V/s
9/12
TS912
MACROMODEL Applies to : TS912 (VCC = 5V)
** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TS912_5 1 3 2 4 5 (analog) ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.322092E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.498970E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.750000E+00 FCN 5 4 VOFN 5.750000E+00 ISTB0 5 4 500N * AMPLIFYING STAGE FIP 5 19 VOFP 4.400000E+02 FIN 5 19 VOFN 4.400000E+02 RG1 19 5 4.904961E+05 RG2 19 4 4.904961E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.8E+03 HZTN 5 30 VOFN 1.8E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 230 HONM 21 27 VOUT 3800 VINM 5 27 230 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 82 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724 HSCP 68 25 VSCP1 0.8E+08 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08 VSCTHP 60 61 0.0875 ** VSCTHP = le seuil au dessus de vio * 500 ** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ** VSCTHN = le seuil au dessous de vio * 2000 ** c.a.d -375U-000U dus a l'offset ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Symbol Vio Avd ICC V icm VOH VOL Isink Isource GBP SR R L = 10k R L = 10k VO = 5V VO = 0V R L = 10k, CL = 100pF R L = 10k, CL = 100pF R L = 10k No load, per operator Conditions Value 0 50 230 -0.2 to 5.2 4.95 40 65 65 1 0.8 Unit mV V/mV A V V mV mA mA MHz V/s
10/12
TS912
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP
Millimeters Dim. Min. A a1 B b b1 D E e e3 e4 F i L Z 0.51 1.15 0.356 0.204 7.95 2.54 7.62 7.62 6.6 3.18 5.08 3.81 1.52 0.125 Typ. 3.32 1.65 0.55 0.304 10.92 9.75 0.020 0.045 0.014 0.008 0.313 Max. Min.
Inches Typ. 0.131 0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.150 0.060 Max.
11/12
TS912
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4.0 1.27 0.6 8 (max.) 0.150 0.016 Typ. Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5.0 6.2 0.189 0.228 Min. 0.004 0.026 0.014 0.007 0.010
Inches Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 0.157 0.050 0.024
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibil ity for the consequences of use of such information nor for any infring ement of patents or other righ ts of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change witho ut notice. This publ ication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life suppo rt devices or systems withou t express written approval of STMicroelectronics. (c) The ST logo is a registered trademark of STMicroelectronics (c) 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States (c) http://www. st.com
12/12


▲Up To Search▲   

 
Price & Availability of TS912IN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X